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Introduction

= Epoxy resins find many uses

= Adhesives and binders

= Composites

= Coatings

= Encapsulants and potting compounds

= Nearly all epoxies are petroleum derived

= Health and safety can be a concern
= Acute toxicity (hardeners especially)
= Chronic toxicity (hardeners, bisphenols, etc.)

= Recycling and reuse are extremely challenging
> Many opportunities to improve sustainability!
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Selecting a Sustainable

Epoxidized Linseed Oil (ELO)

Clean, single-step synthesis

Good availability (multiple large suppliers)
Inexpensive (<€2/kQg)

Low viscosity (~1,000 cps)

High functionality (f ~ 6, EEW ~ 170-180)
Minimally toxic (FDA approved for food contact)
Derived from a non-food crop

Low reactivity (all secondary epoxies)



Forming a Network:
Anhydride Cure

el

Various

ELO

\K;C catalysts

160-200°C

2-24 hr.
Ex.: Nadic Methyl Anhydride
(NMA)

Found workable with a range of liquid anhydrides
Catalysis required for curing to proceed

igh curing temperatures necessary
omogeneous, void-free material produced
ighest hardness, modulus values realized

- For more, see: Ind. Eng. Chem. Res., 2017, 56 (10), pp 2658—-2666

Ind. Eng. Chem. Res., 2017, 56 (10), pp 2673-2679



Anhydride-cured ELO:
M DMA & Tensile Properties
|

.

= Methyltetrahydrophthalic anhydride (MTHPA) identified as optimal hardener; two catalysts studied:
« DBU = 1,8-Diazabicyclo(5.4.0)undec-7-ene — liquid, cures well but induces voiding during composite formation
= 2E4MI = 2-Ethyl-4-methylimidazole — requires pre-heating, similar cure levels to DBU but no void formation

= Standard (9.6% oxirane oxygen) and high oxirane (10.4% oxirane oxygen) ELO used
= Control was Hexion RIM 145, a high performance anhydride-cured epoxy used in wind energy
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Anhydride-cured ELO:
M composite Production
I

= Vacuum Assisted Resin Transfer Molding (VARTM) gives test coupons
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= Bioepoxies are ELO cured with MTHPA or NMA, catalyzed with DBU or 2E4MI
= Conventional controls are Hexion RIM 135 (amine-cured) and RIM 145
(anhydride-cured), both used in wind energy
= Unidirectional (UD) stitched E-glass (Saertex 955) provides reinforcement
= Constituent component analysis:
= Fiber fraction = 52-57 vol%

= Resin fraction = 42-46 vol%
= Void fraction = 0.7-1.4 vol% (5.5 vol% for ELO-MTHPA-DBU)



UD E-glass Composites:
J Flexural Properties
|
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= Resin dominates transverse properties
= Axial modulus is fiber-dominated, while strength is more sensitive to interface
= Excessive voiding compromises properties of ELO-MTHPA-DBU in particular



D E-glass Composites:

J FIe ural Properties
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= Conventional systems show catastrophic failure
o om  ow  os m  DBiOepoxies provide greater damage tolerance
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UD E-glass Composites:
Post-fracture Analysis
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= Conventional control shows strong matrix adhesion, fiber breakage
= Bioepoxy shows much more debonding, implying a weaker interface



Adding Reworkability

= Montarnal et al achieve reworkability in epoxies via
transesterification — Science 334 965 (2011)

= DGEBA / dicarboxylic acid / tricarboxylic acid
= Modulus = 4 MPa ¥
= Failure stress = 9 MPa § -~

= Failure strain = 180%
=« DGEBA / glutaric anhydride

= Modulus = 1.8 GPa

= Failure stress = 55 MPa

- T, ~ 80°C
= Zinc acetylacetonate used as transesterification catalyst
= Implication is that excess hydroxyls are needed

= We successfully apply this approach to systems without
significant quantities of excess hydroxyls




Assessing Reworkability:
71 Catalyst Screening
|

= Static load applied to RIM 145 specimens for 4 hours
= In the absence of catalysts, <4% strain is observed
= In the presence of catalysts, can see up to ~70% strain
= No significant changes in hardness after testing
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Assessing Reworkability:
- Stress Relaxation

|

= Characteristic
1.2 relaxation time (T7)
240C defined according to

Brutman et al.
(ACS Macro Lett., 2014, 3, 607)

= Values of T* follow

Arrhenius relation in
RIM 145 control
= E, ~95-170 kJ/mol
= T ~80-500s @
270°C

1 10 100 1000 10000 = Correlation between
: In T" and strain
Time (s :
(S) under static load




Using Reworkability:
J Mechanical Recycling
|

= Mechanical grinding
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Regrind 5 mm Regrind 2 mm Regrind 0.2 mm Regrind Composite

= Reprocessing via compression molding
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Using Reworkability:

J Mechanical Recycling

E' at 23°C (GPa)

9 ~ 70 70

)
Stress at Failure (MPa)

Modulus and T, are mostly retained regardless of particle size
(similar results in bioepoxy systems)
Stress and strain at failure are highest with finest particle size
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Using Reworkability:
J Chemical Recycling

s )
‘\_Y ‘ > Matrix removed

= Composite: RIM145 / E-glass
= Solvent: 1-Dodecanol

= Catalyst: n-butyltin tris(2-ethylhexanoate)
= Heated for 12 hours

= Cleaned in solvent, then water



Using Reworkability:
,ﬂ Chemical Recycling
-
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= Stiffness entirely retained

o = Strength reduced, likely due to
Reclaimed E-glass composite changes in fiber sizing
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Using Reworkability:
J Chemical Recycling
|
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= Can improve properties with reclaimed fibers in bioepoxies(!)
= Rate of chemical recycling is much faster as well




Using Reworkability:
J Reuse via thermoforming

= Flat sheet of RIM 145 epoxy resin prepared
in the presence of transesterification catalyst

= Sample placed in tooling, heated to rework temperature, pressure applied
= Sample cooled in water to yield rigid, permanently deformed epoxy part!



Summary & Conclusions

¥ A‘nhydride-cured structural thermosets successfully
produced based solely on epoxidized linseed oil (ELO)

= Bioepoxy composites provide good mechanical properties
= Results are competitive with highly optimized controls
= Bioepoxy composites are more damage tolerant than controls
« Interfacial debonding, lower axial strength imply weak interface
= Performance may be improved via optimization of fiber sizing

= Transesterification catalysts enable recycling and reuse

= Mechanical recycling demonstrated, particle size effect noted

= Chemical recycling demonstrated, reclaimed fibers give high
performance composites, especially effective with bioepoxies

= Thermoforming demonstrated, promises reuse of existing parts
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