Luxinnovation Greater Region Plastics Workshop Luxembourg December 4th, 2018

Enhancing the Sustainability of Epoxy Resins and their Fiber Composites

Daniel F. Schmidt*

LIST (

Associate Professor of Plastics Engineering University of Massachusetts Lowell

*Lead Research & Technology Associate Department of Materials Research and Technology Luxembourg Institute of Science & Technology (since September 1, 2017)

- Epoxy resins find many uses
 - Adhesives and binders
 - Composites
 - Coatings
 - Encapsulants and potting compounds
- Nearly all epoxies are petroleum derived
- Health and safety can be a concern
 - Acute toxicity (hardeners especially)
 - Chronic toxicity (hardeners, bisphenols, etc.)
- Recycling and reuse are extremely challenging

→ Many opportunities to improve sustainability!

Selecting a Sustainable **Epoxy Resin**

 $H_{2}O_{2}$

http://dawnofthenewage.com/wp-content/uploads/2013/01/linseed-oil-and-flax-seeds.ipg

CH₃

Epoxidized Linseed Oil (ELO)

- Clean, single-step synthesis
- Good availability (multiple large suppliers)
- Inexpensive ($< \in 2/kg$)
- Low viscosity (\sim 1,000 cps)
- High functionality (f ~ 6, EEW ~ 170-180)
- Minimally toxic (FDA approved for food contact)
- Derived from a non-food crop
- Low reactivity (all secondary epoxies)

- Found workable with a range of liquid anhydrides
- Catalysis required for curing to proceed
- High curing temperatures necessary
- Homogeneous, void-free material produced
- Highest hardness, modulus values realized
 - → For more, see: Ind. Eng. Chem. Res., 2017, 56 (10), pp 2658–2666 Ind. Eng. Chem. Res., 2017, 56 (10), pp 2673–2679

Anhydride-cured ELO: DMA & Tensile Properties

- Methyltetrahydrophthalic anhydride (MTHPA) identified as optimal hardener; two catalysts studied:
 - DBU = 1,8-Diazabicyclo(5.4.0)undec-7-ene liquid, cures well but induces voiding during composite formation
 - 2E4MI = 2-Ethyl-4-methylimidazole requires pre-heating, similar cure levels to DBU but no void formation
- Standard (9.6% oxirane oxygen) and high oxirane (10.4% oxirane oxygen) ELO used
- Control was Hexion RIM 145, a high performance anhydride-cured epoxy used in wind energy

• Vacuum Assisted Resin Transfer Molding (VARTM) gives test coupons

- Bioepoxies are ELO cured with MTHPA or NMA, catalyzed with DBU or 2E4MI
- Conventional controls are Hexion RIM 135 (amine-cured) and RIM 145 (anhydride-cured), both used in wind energy
- Unidirectional (UD) stitched E-glass (Saertex 955) provides reinforcement
- Constituent component analysis:
 - Fiber fraction = 52-57 vol%
 - Resin fraction = 42-46 vol%
 - Void fraction = 0.7-1.4 vol% (5.5 vol% for ELO-MTHPA-DBU)

- Resin dominates transverse properties
- Axial modulus is fiber-dominated, while strength is more sensitive to interface
- Excessive voiding compromises properties of ELO-MTHPA-DBU in particular

UD E-glass Composites: Flexural Properties

ELO-MTHPA-2E4MI

RIM145

- Conventional control shows strong matrix adhesion, fiber breakage
- Bioepoxy shows much more debonding, implying a weaker interface

Adding Reworkability

- Montarnal et al achieve reworkability in epoxies via transesterification – *Science* 334 965 (2011)
 - DGEBA / dicarboxylic acid / tricarboxylic acid
 - Modulus = 4 MPa
 - Failure stress = 9 MPa
 - Failure strain = 180%
 - DGEBA / glutaric anhydride
 - Modulus = 1.8 GPa
 - Failure stress = 55 MPa
 - T_g ~ 80°C
 - Zinc acetylacetonate used as transesterification catalyst
 - Implication is that excess hydroxyls are needed
- We successfully apply this approach to systems <u>without</u> significant quantities of excess hydroxyls

Assessing Reworkability: Catalyst Screening

Static load applied to RIM 145 specimens for 4 hours

- In the absence of catalysts, <4% strain is observed
- In the presence of catalysts, can see up to ~70% strain
- No significant changes in hardness after testing

Assessing Reworkability: Stress Relaxation

- Characteristic relaxation time (T^{*}) defined according to Brutman et al. (ACS Macro Lett., 2014, 3, 607)
 - $G/G_0 = 1/e \rightarrow \tau^*$
- Values of T^{*} follow Arrhenius relation in RIM 145 control
 - E_a ~ 95-170 kJ/mol
 - т* ~ 80-500 s @ 270°С
 - Correlation between In τ^{*} and strain under static load

Using Reworkability: Mechanical Recycling

Mechanical grinding

Regrind 5 mm

- Regrind 2 mm
- Regrind 0.2 mm

Regrind Composite

Reprocessing via compression molding

- Modulus and T_a are mostly retained regardless of particle size (similar results in bioepoxy systems)
- Stress and strain at failure are highest with finest particle size

Using Reworkability:

- Composite: RIM145 / E-glass
- Solvent: 1-Dodecanol
- Catalyst: n-butyltin tris(2-ethylhexanoate)
- Heated for 12 hours
- Cleaned in solvent, then water

Using Reworkability: Chemical Recycling

Reclaimed E-glass composite

Can <u>improve</u> properties with reclaimed fibers in bioepoxies(!)
Rate of chemical recycling is much faster as well

Using Reworkability: Reuse via thermoforming

- Flat sheet of RIM 145 epoxy resin prepared in the presence of transesterification catalyst
- Sample placed in tooling, heated to rework temperature, pressure applied
- Sample cooled in water to yield rigid, permanently deformed epoxy part!

Summary & Conclusions

- Anhydride-cured structural thermosets successfully produced based solely on epoxidized linseed oil (ELO)
- Bioepoxy composites provide good mechanical properties
 - Results are competitive with highly optimized controls
 - Bioepoxy composites are more damage tolerant than controls
 - Interfacial debonding, lower axial strength imply weak interface
 - Performance may be improved via optimization of fiber sizing
- Transesterification catalysts enable recycling and reuse
 - Mechanical recycling demonstrated, particle size effect noted
 - Chemical recycling demonstrated, reclaimed fibers give high performance composites, especially effective with bioepoxies
 - Thermoforming demonstrated, promises reuse of existing parts

THANK YOU FOR YOUR ATTENTION! Acknowledgements

Collaborators and Group Members

- Assoc. Prof. Emmanuelle Reynaud (UML Mechanical Engineering)
- Chris Kuncho (PhD), Wenhao Liu (PhD), Johannes Möller (PhD), Julia Kammleiter (MS), Julia Stehle (MS), Dr. Akshay Kokil

Financial Support

- National Science Foundation (Award #1230884)
- Massachusetts Toxics Use Reduction Institute

Materials and Analytical Support

- ACS Technical Products (Epoxidized linseed oil)
- Huntsman Advanced Materials (MTHPA)
- Hexion (RIM 135 & 145)

General Support

- W. Liu, Dr. A. Kokil & the Reynaud-Schmidt Research Group
- P. Casey, Dr. E. Ada & the UML Core Research Facilities
- D. Rondeau, M. Shone, Dr. X. Chen, Prof. S. Johnston, UML Plastics Engineering and the UML Composites Lab

FOR MORE INFORMATION:

