Car as Power Plant (CaPP):

Integrated mobility and energy systems

Dr. ir. Samira Farahani, Future Energy Systems, TU Delft

Congress on "Hydrogen: hype or real business opportunities" 21-02-2019, Luxumburg

Hydrogen Market

Car as Power Plant Concept

THESE TYPE OF CARS PRODUCE...

...WHICH WE CAN USE IN...

Integrated Energy and Mobility Systems

System design- case studies:

- 1. Hospital
- 2. Smart City
- 3. Office

CaPP Concept @ Shell Technology Center Amsterdam

Concept design of 100% renewable energy system with two energy carriers (hydrogen and electricity) at the controlled environment of Shell Technology Centre Amsterdam

Scenario III: Combination of I & II

Combining the first and second scenarios using the current electricity and gas capacity

- What is a 'good' combination?
- Which components need to be added or removed?
- Do we need other energy resources?
- Which combination is the most cost efficient?

System's Component Cost: Hydro-Electric vs. All-Electric Case

Hydro-electric		All-electric	
Wind	8.39 MW	Wind	3.786 MW
Storage (salt cavern)	2770k kg H ₂	Stationary battery	200 MWh (local)
		Stationary battery	12 MWh (local) 3059 MWh (external)

(System) Levelized Cost of Energy: Hydro-electric Case

Type of LCOE	Cost [euro/kWh]
LCOE _{Wind}	0.030
LCOE _{Solar}	0.071
SLCOE _{H2} [kg]	2.550 [euro/kg]
SLCOE _{H2SLCOE} (HHV)	0.065
SLCOE _{SFC}	0.12
SLCOE _{FCEV}	0.23
SLCOE _{REV}	1.72
SLCOE _{STCA} (weighted average)	0.138

Hydro-Electric 2025 with a 1650 kW SFC

(System) Levelized Cost of Energy: All-electric Case

Type of LCOE	Cost [euro/kWh]
LCOE _{Wind} SLCOE _{Wind}	0.030 0.048
SLCOE _{FCEV}	0.0/1 3.63 0.45
SLCOE _{STCA} (weighted average)	0.57

All-Electric 2025 with a 200 MWh local battery

Type of LCOE	Cost [euro/kWh]
LCOE _{Wind}	0.030
SLCOE _{Wind}	0.063
LCOE _{Solar}	0.0/1
SLCOE _{BESS}	0.78
SLCOE _{FCFV}	0.40
SLCOF	0.36
SLCOE _{STCA} (weighted average)	0.166

EV Requirement for V2G

Number of EVs required for the entire year in the hydrogen-electric case

V2G @ TU Delft

Hyundai ix35 FCEV - 10 kW V2G output

Fuel cell power: 100 kW

Tank-to-AC-Grid efficiency: 51%

• Range: 500 km

Developed in cooperation with Hyundai Company in South Korea

V2G @ TU Delft

- Smart, Hydroelectric Combined power output 30 kW pack
- Battery pack: 5.3 kWh; FC power: 1 kW
- Range: 65 km/ 45km (hydrogen / electric)
- Max speed: 85 km/h
- Developed by Accenda, TU Delft Science Center

FCEV2G Performance

V2G power output [kW]

The Scooter as Power Plant

Item	Specification
Fuel Cell power	1.2 kW
Battery Energy	0.5 kWh
Hydrogen storage	Metal hydride
Max hydrogen stored	90 g
Driving range	Approx. 50 km
Max speed	40 km/h

Experimental analysis of behavior in 3 different modes

Thank You!

E-mail: s.farahani@tudelft.nl

- Oldenbroek V, Hamoen V, Alva S, Robledo C, Verhoef L, Wijk A Van. (2017) Fuel Cell Electric Vehicle-to-Grid: Experimental feasibility and operational performance. 6th Eur. PEFCF & Electrolyser Forum 2017, Luzern, Zwitserland. ISBN: 978-3-905592-22-1.
- 2. Oldenbroek V., Nordin, L., Wijk, A.J.M. van, (2017). Fuel cell electric vehicle to grid: emergency and balancing power for a 100% renewable hospital. Presentation and paper at 6th Eur. PEFCF & Electrolyser Forum 2017, Luzern, Zwitserland.
- 3. Oldenbroek, V., Verhoef, L. A., & van Wijk, A. J. (2017). Fuel cell electric vehicle as a power plant: Fully renewable integrated transport and energy system design and analysis for smart city areas. International Journal of Hydrogen Energy, 42(12), 8166-8196
- 4. S.S. Farahani, R. van der Veen, V. Oldenbroek, E. Park Lee, N. van de Wouw, A.J.M. van Wijk, B. De Schutter, Z. Lukszo, Hydrogen-Based Integrated Energy and Transport System, IEEE System, Man, and Cybernetics Magazine, 5(1), pp. 27-50, Jan 2019.

